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We theoretically analyze optical forces on aggregates of metal nanoparticles in a focused Gaussian beam by
extending the generalized Mie theory, which includes higher order multipoles and retardation effects. For two
interacting metallic particles, an attractive gradient force, mainly caused by multipole plasmon excitation,
exists at short interparticle distances, while induced dipolar fields dominate for separations of the order of the
particle radius R or larger. The long-range force component can be either attractive or repulsive depending on
the phase of the induced dipoles, as determined by the illumination wavelength and the collective dipolar
plasmon resonance. In particular, the repulsive force that occurs for illumination near the plasmon resonance
wavelength can be so large that it overcomes the optical trapping effect of the Gaussian beam.
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I. INTRODUCTION

Optical forces acting on small particles can, in general, be
divided into two parts: the dissipative force and the gradient
force. The dissipative force, which points in the direction of
the propagation of the incident light, is caused by the change
of momentum of the particle due to reflection and absorp-
tion. The gradient force, which is proportional to the inten-
sity gradient of the incident light and caused by the inhomo-
geneous distribution of the electromagnetic field around the
particle, enables optical trapping1 and manipulation2 of small
particles. However, stable optical trapping relies on the pre-
cise balance between the dissipative force and the gradient
force, and quantitative evaluation of optical force experi-
ments therefore requires sophisticated electrodynamics
theory and simulation.3 Several methods and approximations
have been utilized to calculate the optical forces acting on a
single particle in a Gaussian beam, a problem of central im-
portance to laser tweezers technology.2 Harada and Asakura4

and Chaumet and Nieto-Vesperinas,5 for example, used the
dipole approximation to investigate the small-particle case,
while Ashkin6 used ray optics to model the case of micron-
sized dielectric particles.

During the last few years, a large interest in optical forces
in the context of nano-optics and, in particular, plasmonics
has developed.7–11 We have been particularly interested in
induced optical forces between nearby plasmonic nanopar-
ticles. The problem of two interacting metal nanoparticles
illuminated by a plane wave was studied theoretically by Xu
et al.12 and later by Hallock et al.13 These studies indicated
that strong forces can be induced even for relatively weak
incident field strengths and that the interaction can be repul-
sive or attractive depending on incident wavelength, polar-
ization, and surface-to-surface separation. An application of
such interparticle forces is surface-enhanced Raman scatter-
ing �SERS�,14 which typically utilizes the very large electro-
magnetic field enhancement that occurs in the junctions be-
tween nearly touching noble metal nanoparticles.12,15 We
have recently experimentally demonstrated that optical ag-

gregation of Ag nanoparticles leads to a large increase of the
SERS signal from adsorbed organic molecules.16 In particu-
lar, we showed that “hot” pairs of Ag particles could be
formed through optical manipulation,17 and we argued that
the final dimerization of the particles within the diffraction
limited laser focus was due to the aforementioned optical
interparticle force. In this paper, we further describe details
of the calculation method used in Ref. 17 and present theo-
retical results on the optical interaction between silver and
gold nanoparticles as a function of particle size and illumi-
nation wavelength. Our calculation method is based on the
generalized Mie thory,18 which is well suited for investiga-
tions of interactions between spherical plasmonic particles19

and includes both multipolar effects and retardation. To
simulate the optical forces and interactions between two par-
ticles in a focused laser beam, we first use the Davis
formalism20 to expand a Gaussian beam into a sum of vector
spherical harmonics �VSHs� with different orders.21,22 The
self-consistent scattered fields from the particles are then cal-
culated using the order-of-scattering method.23,24 This proce-
dure yields the total local field at any point in space as a sum
of the incident field and the field scattered from all the nano-
particles in the system. The optical force acting on a given
nanoparticle is obtained by integrating the Maxwell stress
tensor, which is obtained from the local field, over the sur-
face of the nanoparticle.25

The paper is arranged as follows: in Sec. II, the theoretical
method is introduced. In Sec. III, the optical forces and the
optical potentials of two metallic nanoparticles in a focused
Gaussian beam are investigated for different incident wave-
lengths. In Sec. IV, the limitation of this theory is discussed.
A short summary is given in Sec. V.

II. THEORETICAL APPROACH

To introduce a z-axis propagating and x-axis polarized
Gaussian beam into the Mie theory, we expand the Davis
formula20 into VSHs. The transverse magnetic �TM� and
transverse electric �TE� VSHs are defined as follows:
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where n� �1,�� and m� �−n ,n� are the multipole order and

the corresponding angular number, respectively, r� ,�� ,�� are
the unit vectors in spherical coordinates, k is the absolute
value of the wave vector, zn
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We adopt the expansion method of Refs. 21 and 22, where
the electromagnetic components in spherical coordinates are
expressed by the Bromwich scalar potentials UTM and UTE
by introducing the Gaussian expansion coefficients gnm,TM
and gnm,TE. As an example, the � component of the electric
field is
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where �=k / ����1/2 and � and � are the permeability and the
permittivity of the medium, respectively. The Bromwich sca-
lar potentials for TM and TE waves are 26
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By inserting Eq. �4� into Eq. �3� the � component, the elec-
tric field can be expressed in terms of TM- and TE-VSHs as
follows:
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where

FYP = �− 1���m�−m�/2	�2n + 1��n − �m��!
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.

Applying the same derivation to the components Er and E�,
and adopting the notations used in Ref. 23, we obtain the
expansion of the incident Gaussian beam on the lth sphere,
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The scattered field is a sum of the scattered electric field
from all the spheres,
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The symbol � means that the sum should be performed in
the Cartesian coordinates. SCmnp

l is the scattering expansion
coefficients for the VHS �mn3p�, which is calculated by the
order-of-scattering method.23,24 In this method, GCmn

l and
SCmnp

l are written as the corresponding incident and scatter-
ing matrices for a system of L spheres: LGl and LTl. Using
the matrix 	�L� to represent the response of the L-sphere
system, the relation between incident and scattering matrices
is simply expressed as24

�LT1, LT2, LT3, . . . , LTL� = �G1,G2,G3, . . . ,GL�	�L�. �8�

For conciseness, we give 	�L� directly,
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where 
�L−1�= �
L,1 ,
L,2 , . . . ,
L,L−1� and 
��L−1�

= �
L,1 ,
L,2 , . . . ,
L,L−1�T. Here, 
k,l, obtained from the ad-
dition theorem,27 is the translation matrix from a coordinate
system centered on the kth sphere to a coordinate system
centered on the lth sphere.
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After knowing the scattering electric field, the magnetic
field can be obtained through the relations

H =
1

i��
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k
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k
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The time-averaged optical force acting on a nanosphere is
finally calculated by integrating the Maxwell stress tensor
Tij =�EiEj +1 /�BiBj −1 /2��E2+1 /�B2��ij over the surface S
of the sphere,25

�F� = �
S

�Tn�ds . �11�

The optical potential is then the work needed to move the
particle from position r0 to infinity,

U = − �
�

r0

F�r� · dr . �12�

III. RESULTS AND DISCUSSIONS

In the following, we will illustrate the simulation tech-
nique described above through examples that may have ex-
perimental relevance. We confine our study to Au and Ag
spheres with radii between 20 and 100 nm, thus including
the size range for which colloidal particles can be readily
synthesized. Further, we restrict ourselves to optical forces
and interactions in the focal plane of a focused laser beam,
thus simulating the case when the movement of particles
along the optical axis of the optical tweezers is restricted by
a substrate.17 We first illustrate the case of one trapped par-
ticle and then go on to the more interesting case of two
interacting particles, where one of the particles is fixed at a
certain distance from the beam center and the other particle
is free to move in response to the total optical potential in the
focal plane.

Figure 1�a� shows the spatial distribution of the electric
field modulus of a Gaussian beam centered at the z axis
�wavelength �=830 nm and beam waist radius w0=500 nm�
in the focal plane �z=0� obtained by the “on-axis” VSH
expansion.21 The multipole order n is here truncated at N
=12. The relative error for both the modulus and the phase
angle of the electric field is less than 10−3 compared to the
Davis formula20 �not shown�, which is enough for the con-
vergence and accuracy of the calculation. For the “off-axis”
case,22 i.e., for the case when the particles are not on z axis,
the accuracy becomes lower. Considering that the Gaussian
beam is in itself an approximation to a tightly focused beam
in an experiment, the off-axis VSH expansion should still be
meaningful for estimating a wide range of trapping effects.

Optical trapping of a single silver nanoparticle by a
Gaussian beam is illustrated in the inset of Fig. 1�a�. A Ag
sphere with a radius R=20 nm is placed at the position x
=w0 /2, y=z=0. Figure 1�b� illustrates the pressures exerted
on different parts of the surface of the sphere by red arrows,
while the light intensity distribution over the surface is illus-
trated by the color bar. The net force is obtained by integrat-
ing the pressure over the whole surface. In a plane wave, the
net force in any direction perpendicular to the incident
k-vector would be zero. In the Gaussian beam, however, the
incident light intensity varies in the xy plane, which results in
a net optical force pointing toward the beam center. Figure
1�c� shows the pressure component along the surface normal
around the sphere’s equator in the focal plane. An asymmet-
ric pressure distribution is clearly seen, as expected from the
induced dipole moment in the particle. As shown in Fig. 2,
the transverse optical force goes to zero when the sphere is
moved to the beam center, where the optical potential is
minimum. In order to trap the Ag nanoparticle at the center
of the beam, the potential depth has to surpass the thermal
kinetic energy of the nanoparticle ��1kBT�. For the present
set of parameters, this is clearly the case.

FIG. 1. �Color online� �a� Field profile of the
Gaussian beam in focal plane for �=830 nm and
w0=500 nm. The geometry of the 2D optical
trapping is shown in the inset. �b� The optical
pressure distribution over the surface of a silver
sphere �R=20 nm� positioned at w0 /2 along x
axis for an incident power P=50 mW. The colors
represent the light intensity. �c� The pressure
component along the surface normal around the
equator of the sphere in the focal plane.

OPTICAL FORCES ON INTERACTING PLASMONIC… PHYSICAL REVIEW B 77, 085412 �2008�

085412-3



In the experiment of Ref. 17, a silver nanoparticle is
trapped in two dimensions by a focused laser beam of wave-
length �=830 nm. The optically trapped particle is then
moved close to an immobilized nanoparticle, stuck on the
cover glass substrate, to create “hot” particle dimers for
SERS. Our previous calculations showed that dimers should
form when the particle-particle distance is less than approxi-
mately half the beam waist. Here, we give more detailed
results and discussions about this two-sphere interaction for
different particle sizes and for different incident wave-
lengths. We also make a comparison to the van der Waals
forces that exist between the particles in the absence of any
external illumination.

As shown in the inset of Fig. 3�a�, the Gaussian beam is
centered on the origin of the coordinate system. An immobi-
lized particle “I” is placed on the positive x axis at a distance
D from the origin. We now calculate the optical potential
experienced by a particle “F,” which is free to move along
the x axis, as a function of x for different values of D. We
first restrict ourselves to two incident wavelengths ��
=514.5 nm and �=830 nm�, to the case of homodimers, i.e.,
R1=R2=R, and to the case when the polarization of the
Gaussian beam is along the x axis. When the beam center is
far away from the origin �D=600 nm, dashed lines�, only a
small part of the incident light actually hits the immobilized
particle. The optical potential is then similar to the case of a
single particle in Gaussian beam. It is clear that for a proper
incident power, the movable nanoparticle can be trapped in
the beam center. For example, for a Ag sphere with R
=20 nm, at �=514 nm and for P=10 mW, the trapping po-
tential �U�=2.5kBT, and at �=830 nm and P=20 mW, �U�
=2.4kBT. However, it is unlikely that a nanoparticle that is
initially trapped at the center of the Gaussian beam will over-
come the relative large potential barrier toward the immobi-
lized particle to form a dimer. When D=250 nm �thick solid
lines�, the potential barrier between the beam center and the
origin has decreased considerably, and in some cases, the
potential curve is so distorted that the original Gaussian po-
tential well cannot be distinguished. In general, a Ag nano-
particle trapped at the beam center then has the possibility to
overcome the barrier to form a particle pair. An exception is

the case of R=50 nm at �=514 nm shown in Fig. 3�b�,
where the barrier is considerable �thick green line�. It is dif-
ficult for the nanoparticle F to overcome the barrier under an
incident laser power P
3 mW. Even when the beam center
moves to the origin �thin green line�, the barrier is still about
2.3kBT for an incident power P=20 mW.

The case of Au particles is shown in Fig. 4. The configu-
ration is the same as that in the inset of Fig. 3�a�. The poten-
tial of the particle at the beam center is the lowest at �
=633 nm �red lines� for all cases, R=20, 50, and 100 nm;
i.e., it is possible to trap the gold particle with the 633 nm
Gaussian beam. As the distance D decreases, nanoparticle
pairs can eventually form, just as in the case of Ag above.
However, when the incident wavelength �=514 nm, i.e.,
close to the particle plasmon resonance wavelength, the real
part of the polarizability is negative for R=50 and 100 nm
Au spheres. This is because of the strong surface plasmon
shift induced by retardation effect for large particles. The
gradient force thus turns out to be repulsive and optical trap-
ping becomes impossible. Hence, the potential exhibits a
maximum at the beam center, as shown in Figs. 4�b� and
4�c�.

For closely spaced nanoparticles, the van der Waals force
cannot be neglected. To illustrate this effect, we have plotted
the van der Waals interaction energy Uv for the two nanopar-

FIG. 2. The transverse optical force �dashed line� and the optical
potential �solid line� experienced by a silver nanoparticle �R
=20 nm� in water for the case when the particle is situated in the
focal plane of a x-axis polarized Gaussian beam ��=830 nm, w0

=500 nm, P=50 mW�. The potential is expressed in units of kBT,
where T=300 K.

FIG. 3. �Color online� The optical potential experienced by a
mobile silver particle �F� close to an identical immobilized particle
�I� as a function of the x position of the mobile particle. The right
inset in �a� shows the optical trapping configuration for the two-
particle system. The radii of spheres are R=20, 50, and 100 nm for
�a�–�c�, respectively. Different separations, D=0, 250, and 600 nm,
between the beam focus and the position of the immobilized par-
ticle are represented by dashed, thick solid, and thin solid lines
�green for �=514 nm and red for �=830 nm�, respectively. The
surrounding medium is water and T=300 K. The insets to the left in
�a�–�c� are the corresponding van der Waals energies of two silver
spheres as a function of the surface separation.
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ticles in the insets of Figs. 3 and 4. The plots show that the
van der Waals force is small compared to the optical forces
for separations d
10 nm and for an incident power P
=10 mW. However, when the separation decreases further,
the van der Waals force increases dramatically and at d
=1 nm and R=20 nm, Uv is about −11kBT for the Ag particle
pair, which is enough to bond the nanoparticle pairs tightly
without the assistance of optical forces. This result is ex-
pected, considering that the van der Waals energy is propor-
tional to the inverse sixth power of the particle separation.
One may note that for most stable colloidal nanoparticle sys-
tems, one would also need to take into account Coulomb
repulsion due to surface charges on the nanoparticles, which
may prohibit actual contact between the particles.

The potential barrier close to the origin, shown by the
thick green curve in Fig. 3�b�, is caused by the out-of-phase
interaction of the induced dipoles in the nanoparticles. This
effect is analogous to the interparticle optical potential ob-
tained for a particle dimer illuminated by a plane wave, for
which the different phases of the dipoles result in an oscilla-
tion of the optical potential as a function of the interparticle
distance.28 For a Gaussian beam, the oscillation can be more
clearly seen if we subtract the potential of a single particle
�Us� from the potential of the two interacting particles, as
shown in Fig. 5. It is obvious that the period of the oscilla-
tion is close to � /2, which shows that the optical potential
barrier seen in Fig. 3�b� is caused by an out-of-phase dipole
interaction between the two metal nanoparticles.

Before the attractive optical force and the van der Waals
force become dominant at very small separations, the repul-
sive optical force mentioned above could hinder the two

nanoparticles from forming a pair. This effect is particularly
pronounced when the wavelength of the Gaussian beam is
close to the collective resonance wavelength of the nanopar-
ticles. For specific illumination wavelengths, one may even
expect a stable equilibrium distance between the
nanoparticles.29 Figure 6 shows the two-dimensional �2D�
distribution of the optical force exerted on sphere F �R
=100 nm� in the focal plane under resonant illumination ��
=470 nm� and a power of 10 mW. The filled circle repre-
sents the immobilized sphere I, which is situated on the x

FIG. 4. �Color online� Identical plots as in Fig. 3 but for Au
particles.

FIG. 5. �Color online� Pseudocolor plot of U-Us �see text for
description� for silver particles �R=50 nm� as a function of the x
position of particle F and of the illumination wavelength. The im-
mobilized sphere is situated on the x axis at a distance D
=250 nm from the origin. The incident power of the Gaussian beam
�w0=500 nm� is 1 mW, the surrounding medium is water, and T
=300 K.

FIG. 6. Vector plot of the optical forces exerted on the Ag
sphere F in the focal plane of a Gaussian beam �w0=500 nm� for
the case when the incident wavelength is close to the particle plas-
mon resonance. The immobilized sphere I is situated at +x axis at
D=250 nm �see right inset in Fig. 3�. The radius of the spheres are
100 nm and the laser power is 10 mW. The surrounding medium is
water.
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axis at a distance to the origin of D=250 nm. The dotted
circle represents the case when the mobile sphere F touches
the immobilized sphere I. The arrows denote the direction
and the magnitude of the optical force exerted on the sphere
F. Along the x axis, the optical force is attractive at small
distances, but the force turns repulsive after the sphere F
passes x�−200 nm. The largest repulsive force along the x
axis is 0.68 pN, which occurs when F is at x=−317 nm. The
potential barrier in the x direction, caused by this repulsive
force, is 21.8kBT �not shown�, which would clearly prevent F
from forming a dimer with I. Actually, the repulsive forces at
certain distances, indicated as the dashed circle, can be ex-
pected to completely block dimerization; i.e., there is no path
with a low enough energy barrier accessible for F toward the
potential well corresponding to touching particles. This illus-
trates the very complex particle dynamics that, in general,
can be expected for plasmonic particle systems illuminated
near resonance.

IV. LIMITATIONS

The localized beam model we used here is an approxima-
tion to the first-order Gaussian beam. The average error of
the first-order Gaussian beam is �0.457% for s=0.1 �s
=� /2�w0� and �4.33% for s=0.3.30 For a tightly focused
beam, as generated by a microscope objective with high nu-
merical aperture, i.e., s�0.2, the localized beam model gives
rise to artifacts.22 However, the main artifact is several mi-
crons away from the Gaussian focus, while our calculation is
only related to the part of �2 �m around the focus, as dic-
tated by the radii of the nanoparticles and the relevant par-
ticle separation range. The results presented here are thus

expected to be valid from a simulation point of view. How-
ever, quantitative comparison with experiments should be
performed with caution, in particular, considering the devia-
tions from perfect particle sphericity that is characteristic of
colloidal nanoparticles. An extended treatment will also need
to consider the case of dissimilar nanoparticles, i.e., het-
erodimers. Quantitative comparison with experiments may
also involve corrections for chromatic and spherical aberra-
tions in the illumination system, as discussed in Ref. 3, al-
though such effects can probably be accounted for by utiliz-
ing an effective beam radius larger than the diffraction limit.

V. CONCLUSION

We have presented a method based on the generalized
Mie theory that allows us to calculate the optical forces in
aggregates of interacting metallic nanoparticles illuminated
by a Gaussian beam. This method has the advantages that it
includes both the effects of mutipoles and retardations,
which is crucial for obtaining correct results at both large and
small distances compared to the particle radius. Using this
method, we investigated the optical forces that act on a pair
of interacting plasmonic Au or Ag particles in a focused
Gaussian laser beam. The results point to a rich particle dy-
namics, such as repulsion and attraction, at various distances
determined by field retardation and the resonant properties of
the nanoparticles.
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